metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hossein Aghabozorg,^a* Zahra Aghajani^b and Mahboubeh A. Sharif^b

^aDepartment of Chemistry, Teacher Training University, PO Box 15614, Tehran, Iran, and ^bDepartment of Chemistry, Islamic Azad University, Qom Branch, Qom, Iran

Correspondence e-mail: aghabozorg@saba.tmu.ac.ir

Key indicators

Single-crystal X-ray study T = 193 K Mean σ (C–C) = 0.006 Å R factor = 0.027 wR factor = 0.069 Data-to-parameter ratio = 8.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(2,4,6-triamino-1,3,5-triazin-1-ium) bis(pyridine-2,6-dicarboxylato- $\kappa^3 O, N, O'$)cadmate(II)

In the molecule of the title compound, $(C_3H_7N_6)_2$ -[Cd(C₇H₃NO₄)₂], the Cd^{II} atom has a distorted octahedral coordination environment. In the crystal structure, there are some π - π stacking interactions with short distances between parallel aromatic rings, as well as ion-pairing and intramolecular N-H···O and N-H···N hydrogen-bonding interactions involving the 2,4,6-triamino-1,3,5-triazin-1-ium ions and pyridine-2,6-dicarboxylate ligands.

Comment

We have previously reported some proton-transfer systems, using pyridine-2,6-dicarboxylic acid (pydcH₂), 2,4,6-triamino-1,3,5-triazine (tata), 2,6-pyridinediamine (pyda) and creatinine (creat), which formed the proton-transfer compounds (creatH)(pydcH) (Moghimi *et al.*, 2004), (pydaH)(pydcH) (Aghabozorg *et al.*, 2005) and (tataH)₂(pydc) (Sharif *et al.*, 2006). The crystal structures of some complexes of these systems have been reported (Aghabozorg *et al.*, 2006; Moghimi *et al.*, 2005; Aghajani *et al.*, 2006). We describe here the crystal structure of the title complex, (I), which consists of monomeric units in which the (tataH)⁺ units act as counterions and the (pydc)^{2–} anions as tridentate ligands.

The geometric parameters of (I) are given in Table 1. The Cd^{II} atom is located at the centre of a distorted octahedral arrangement (Fig. 1). The O3–Cd1–O5–C13 [–96.2 (3)°], O3–Cd1–O7–C14 [106.3 (3)°], O5–Cd1–O1–C6 [106.8 (3)°] and O7–Cd1–O3–C7 [97.7 (3)°] torsion angles indicate that the two dianionic (pydc)^{2–} units are almost perpendicular to each other.

It is of interest to note that the crystal packing diagrams indicate the layered structure of (I). The space between two layers of $[Cd(pydc)_2]^{2-}$ complex anions is filled with a layer of (tataH)⁺ cations. In fact, the layers involving the Cd^{II} complex

© 2006 International Union of Crystallography All rights reserved Received 5 July 2006 Accepted 18 July 2006

Figure 1

The asymmetric unit, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A packing diagram for (I). Hydrogen bonds are shown as dashed lines.

are bridged by $(tataH)^+$ counter-ions *via* extensive hydrogen bonds (Fig. 2). Fig. 2 also shows the supramolecular network of the structure. Hydrogen bonds between carboxylate and $(tataH)^+$ groups play important roles in stabilizing the crystal structure. The ranges of $D-H\cdots A$ angles and of the $H\cdots A$

Figure 3

The shortest distances between the π -systems of the cation N3–N5/C15– C17 and the anions N2/C8–C12 and N2C/C8C–C12C. Atoms labelled with the suffix C are generated by the symmetry operator (x, y - 1, z). The intercentroid distances between these π -systems are 3.854 (6) and 3.643 (6) Å, respectively. The dihedral angles between the π -systems of the cation and that of the anion are both 9.7 (2)°.

and $D \cdots A$ distances indicate the presence of strong and weak hydrogen bonding (Table 2).

The short distances between parallel aromatic rings in neighbouring ions indicate π - π stacking interactions. The shortest distances between the π -systems of the cation N3–N5/C15–C17 and the anions N2/C8–C12 and N2C/C8C–C12C [atoms labelled with the suffix C are generated by the symmetry operator (x, y - 1, z)] are in the ranges 3.538–3.849 and 3.076–3.550 Å, respectively (Fig. 3). The shortest distances between the π -systems of another cation (N9–N11/C18–C20) and the anions N1/C1–C5 and N1K/C1K–C5K [atoms labelled with the suffix K are generated by the symmetry operator (x - 1, y, z)] are in the ranges 3.414–3.870 and 3.068–3.455 Å, respectively (Fig. 4). Therefore, in the formation of this Cd^{II} complex, ion pairing, metal–ligand coordination, hydrogen-bonding and π – π stacking play important roles in the construction of its three-dimensional network.

Experimental

A solution of Cd(NO₃)₂·2H₂O (0.022 g, 0.084 mmol) in water (3 ml) was added to a stirred aqueous solution (10 ml) of LH_2 [LH_2 is (tataH)₂(pydc), where tata = 2,4,6-triamino-1,3,5-triazine and pydcH₂ = pyridine-2,6-dicarboxylic acid] (0.07 g, 0.168 mmol). Colourless single crystals of (I) suitable for X-ray characterization were collected at room temperature after a few days.

metal-organic papers

Crystal data

 $\begin{array}{l} (C_{3}H_{7}N_{6})_{2}[Cd(C_{7}H_{3}NO_{4})_{2}]\\ M_{r} = 696.90\\ Monoclinic, Cc\\ a = 10.552 (2) Å\\ b = 10.554 (019) Å\\ c = 22.238 (4) Å\\ \beta = 100.803 (16)^{\circ}\\ V = 2434.9 (8) Å^{3} \end{array}$

Data collection

Rebuilt Syntex $P2_1$ /Siemens P3four-circle diffractometer $\omega/2\theta$ scans Absorption correction: none 3581 measured reflections 3343 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.069$ S = 1.003343 reflections 388 parameters H-atom parameters constrained Z = 4 D_x = 1.901 Mg m⁻³ Mo K α radiation μ = 0.98 mm⁻¹ T = 193 (2) K Prism, colourless 0.20 × 0.20 × 0.15 mm

3035 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 29.1^{\circ}$ 2 standard reflections every 98 reflections intensity decay: 3%

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0469P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.36 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.43 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), with 137 Friedel pairs Flack parameter: 0.01 (2)

Table 1

Selected geometric parameters (Å, °).

Cd1-N2	2.203 (6)	Cd1-07	2.384 (3)
Cd1-N1	2.202 (5)	Cd1-O5	2.391 (3)
Cd1-O1	2.381 (3)	Cd1-O3	2.394 (3)
N2-Cd1-N1	174.93 (11)	O7-Cd1-O5	143.17 (10)
N1-Cd1-O1	71.80 (13)	N1-Cd1-O3	71.32 (13)
N2-Cd1-O7	71.70 (17)	O1-Cd1-O3	143.06 (10)
O1-Cd1-O7	96.27 (12)	O7-Cd1-O3	95.54 (12)
N2-Cd1-O5	71.53 (16)	O5-Cd1-O3	95.28 (12)
O1-Cd1-O5	95.88 (11)		
O5-Cd1-O1-C6	106.8 (3)	O3-Cd1-O5-C13	-96.2 (3)
O7-Cd1-O3-C7	97.7 (3)	O3-Cd1-O7-C14	106.3 (3)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N6-H6A···O6 ⁱ	0.85	1.94	2.773 (5)	170
N6−H6B···O3	0.79	2.09	2.801 (5)	149
N8-H8A···O8 ⁱⁱ	0.85	1.92	2.759 (5)	170
N8-H8B···O1 ⁱⁱⁱ	0.90	2.09	2.850 (5)	142
$N11-H11\cdots O5^{iv}$	0.90	2.24	2.954 (6)	136
$N12-H12A\cdots N4^{v}$	0.95	2.28	3.154 (6)	152
N13-H13A···O4	0.82	1.96	2.776 (5)	174
N13-H13 B ···O7 ⁱⁱⁱ	0.82	2.10	2.812 (5)	144
N14 $-$ H14 A ···O5 ^{iv}	0.78	2.14	2.842 (5)	150
N14 $-$ H14 B ···O2 ^{vi}	0.85	1.92	2.755 (5)	166

Symmetry codes: (i) $x + \frac{1}{2}$, $y + \frac{1}{2}$, z; (ii) x - 1, y, z; (iii) $x - \frac{1}{2}$, $y + \frac{1}{2}$, z; (iv) x, y + 1, z; (v) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, $z - \frac{1}{2}$; (vi) $x - \frac{1}{2}$, $y + \frac{3}{2}$, z.

The highest peak in the final difference electron-density map was located 1.23 Å from atom O1. The H atoms of the NH and NH_2 groups were located in difference syntheses and refined as riding atoms, with distance constraints of N-H = 0.87 and 0.90 Å (for NH)

Figure 4

The shortest distances between the π -systems of the cation N9–N11/C18–C20 and the anions N1/C1–C5 and N1K/C1K–C5K. Atoms labelled with the suffix K are generated by the symmetry operator (x - 1, y, z). The intercentroid distances between these π -systems are 4.018 and 3.526 Å, respectively. The dihedral angles between the π -systems of the cation and that of the anion are both 10.0°.

and N-H = 0.78–0.95 Å (for NH₂), and with $U_{iso}(H) = 1.2U_{eq}(N)$. The remaining H atoms were positioned geometrically, with C-H = 0.95 Å, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *P3/PC* (Siemens, 1989); cell refinement: *P3/PC*; data reduction: *P3/PC*; program(s) used to solve structure: *SHELXTL-Plus* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL-Plus*; molecular graphics: *SHELXTL-Plus*; software used to prepare material for publication: *SHELXTL-Plus*.

We are grateful to Islamic Azad University, Qom Branch, for support of this work.

References

- Aghabozorg, H., Ramezanipour, F., Kheirollahi, P. D., Saei, A. A., Shokrollahi, A., Shamsipur, M., Manteghi, F., Soleimannejad, J. & Sharif, M. A. (2006). Z. Anorg. Allg. Chem. 632, 147–154.
- Aghabozorg, H., Akbari Saei, A. & Ramezanipour, F. (2005). Acta Cryst. E61, 03242–03244.
- Aghajani, Z., Sharif, M. A., Aghabozorg, H. & Naderpour, A. (2006). Acta Cryst. E62, m830–m832.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Moghimi, A., Sharif, M. A. & Aghabozorg, H. (2004). Acta Cryst. E60, o1790-01792.
- Moghimi, A., Sharif, M. A., Shokrollahi, A., Shamsipur, M. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 902–908.
- Sharif, M. A., Aghabozorg, H., Shokrollahi, A., Kickelbick, G., Moghimi, A. & Shamsipur, M. (2006). Pol. J. Chem. 80, 847–863.
- Sheldrick, G. M. (1998). SHELXTL. Version. 5.10. Bruker AXS, Madison, Wisconsin, USA.
- Siemens (1989). *P3/PC* and *XDISK* (Release 4.1). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.