Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hossein Aghabozorg, ${ }^{\text {a }}$ * Zahra Aghajani ${ }^{\text {b }}$ and Mahboubeh A. Sharif ${ }^{\text {b }}$
${ }^{\text {a D Department of Chemistry, Teacher Training }}$ University, PO Box 15614, Tehran, Iran, and
${ }^{\text {b }}$ Department of Chemistry, Islamic Azad University, Qom Branch, Qom, Iran

Correspondence e-mail:
aghabozorg@saba.tmu.ac.ir

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.027$
$w R$ factor $=0.069$
Data-to-parameter ratio $=8.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis(2,4,6-triamino-1,3,5-triazin-1-ium) bis(pyridine-2,6-dicarboxylato- $\boldsymbol{\kappa}^{3} \mathrm{O}, \mathrm{N}, \mathrm{O}^{\prime}$)cadmate(II)

In the molecule of the title compound, $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}_{6}\right)_{2^{-}}$ $\left[\mathrm{Cd}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{2}\right]$, the $\mathrm{Cd}^{\mathrm{II}}$ atom has a distorted octahedral coordination environment. In the crystal structure, there are some $\pi-\pi$ stacking interactions with short distances between parallel aromatic rings, as well as ion-pairing and intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonding interactions involving the 2,4,6-triamino-1,3,5-triazin-1-ium ions and pyridine-2,6-dicarboxylate ligands.

Comment

We have previously reported some proton-transfer systems, using pyridine-2,6-dicarboxylic acid (pydcH_{2}), 2,4,6-triamino-1,3,5-triazine (tata), 2,6-pyridinediamine (pyda) and creatinine (creat), which formed the proton-transfer compounds (creatH)(pydcH) (Moghimi et al., 2004), (pydaH)(pydcH) (Aghabozorg et al., 2005) and (tataH) $)_{2}$ (pydc) (Sharif et al., 2006). The crystal structures of some complexes of these systems have been reported (Aghabozorg et al., 2006; Moghimi et al., 2005; Aghajani et al., 2006). We describe here the crystal structure of the title complex, (I), which consists of monomeric units in which the (tataH) ${ }^{+}$units act as counterions and the (pydc) ${ }^{2-}$ anions as tridentate ligands.

(I)

The geometric parameters of (I) are given in Table 1. The $\mathrm{Cd}^{\text {II }}$ atom is located at the centre of a distorted octahedral arrangement (Fig. 1). The $\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 5-\mathrm{C} 13\left[-96.2(3)^{\circ}\right]$, $\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 7-\mathrm{C} 14 \quad\left[106.3(3)^{\circ}\right], \quad \mathrm{O} 5-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 6$ [106.8 (3) ${ }^{\circ}$] and $\mathrm{O} 7-\mathrm{Cd} 1-\mathrm{O} 3-\mathrm{C} 7$ [97.7 (3) ${ }^{\circ}$] torsion angles indicate that the two dianionic (pydc) ${ }^{2-}$ units are almost perpendicular to each other.

It is of interest to note that the crystal packing diagrams indicate the layered structure of (I). The space between two layers of $\left[\mathrm{Cd}(\text { pydc })_{2}\right]^{2-}$ complex anions is filled with a layer of (tataH) ${ }^{+}$cations. In fact, the layers involving the $\mathrm{Cd}^{\mathrm{II}}$ complex

Figure 1
The asymmetric unit, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
are bridged by (tataH) ${ }^{+}$counter-ions via extensive hydrogen bonds (Fig. 2). Fig. 2 also shows the supramolecular network of the structure. Hydrogen bonds between carboxylate and $(\text { tataH })^{+}$groups play important roles in stabilizing the crystal structure. The ranges of $D-\mathrm{H} \cdots A$ angles and of the $\mathrm{H} \cdots A$

Figure 3
The shortest distances between the π-systems of the cation N3-N5/C15C 17 and the anions $\mathrm{N} 2 / \mathrm{C} 8-\mathrm{C} 12$ and $\mathrm{N} 2 \mathrm{C} / \mathrm{C} 8 \mathrm{C}-\mathrm{C} 12 \mathrm{C}$. Atoms labelled with the suffix C are generated by the symmetry operator $(x, y-1, z)$. The intercentroid distances between these π-systems are 3.854 (6) and 3.643 (6) \AA, respectively. The dihedral angles between the π-systems of the cation and that of the anion are both $9.7(2)^{\circ}$.
and $D \cdots A$ distances indicate the presence of strong and weak hydrogen bonding (Table 2).

The short distances between parallel aromatic rings in neighbouring ions indicate $\pi-\pi$ stacking interactions. The shortest distances between the π-systems of the cation N3-N5/ $\mathrm{C} 15-\mathrm{C} 17$ and the anions $\mathrm{N} 2 / \mathrm{C} 8-\mathrm{C} 12$ and $\mathrm{N} 2 \mathrm{C} / \mathrm{C} 8 \mathrm{C}-\mathrm{C} 12 \mathrm{C}$ [atoms labelled with the suffix C are generated by the symmetry operator $(x, y-1, z)$] are in the ranges 3.538-3.849 and 3.076-3.550 \AA, respectively (Fig. 3). The shortest distances between the π-systems of another cation (N9-N11/C18-C20) and the anions $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 5$ and $\mathrm{N} 1 \mathrm{~K} / \mathrm{C} 1 \mathrm{~K}-\mathrm{C} 5 \mathrm{~K}$ [atoms labelled with the suffix K are generated by the symmetry operator $(x-1, y, z)]$ are in the ranges $3.414-3.870$ and 3.0683.455 Å, respectively (Fig. 4). Therefore, in the formation of this $\mathrm{Cd}^{\text {II }}$ complex, ion pairing, metal-ligand coordination, hydrogen-bonding and $\pi-\pi$ stacking play important roles in the construction of its three-dimensional network.

Experimental

A solution of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.022 \mathrm{~g}, 0.084 \mathrm{mmol})$ in water $(3 \mathrm{ml})$ was added to a stirred aqueous solution (10 ml) of $L \mathrm{H}_{2}\left[L \mathrm{H}_{2}\right.$ is $(\text { tataH })_{2}($ pydc $)$, where tata $=2,4,6$-triamino-1,3,5-triazine and pydcH ${ }_{2}$ $=$ pyridine-2,6-dicarboxylic acid] $(0.07 \mathrm{~g}, 0.168 \mathrm{mmol})$. Colourless single crystals of (I) suitable for X-ray characterization were collected at room temperature after a few days.

Crystal data

$\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}_{6}\right)_{2}\left[\mathrm{Cd}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{2}\right]$
$M_{r}=696.90$
Monoclinic, $C c$
$a=10.552$ (2) \AA
$b=10.5640$ (19) \AA
$c=22.238$ (4) A
$\beta=100.803(16)^{\circ}$
$V=2434.9(8) \AA^{3}$

Data collection

Rebuilt Syntex $P 2{ }_{1} /$ Siemens $P 3$
four-circle diffractometer $\omega / 2 \theta$ scans
Absorption correction: none
3581 measured reflections
3343 independent reflections

$Z=4$

$D_{x}=1.901 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.98 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Prism, colourless
$0.20 \times 0.20 \times 0.15 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.069$
$S=1.00$
3343 reflections
388 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

Cd1-N2	$2.203(6)$	Cd1-O7	$2.384(3)$
Cd1-N1	$2.202(5)$	$\mathrm{Cd} 1-\mathrm{O} 5$	$2.391(3)$
Cd1-O1	$2.381(3)$	$\mathrm{Cd} 1-\mathrm{O} 3$	$2.394(3)$
N2-Cd1-N1	$174.93(11)$	$\mathrm{O} 7-\mathrm{Cd} 1-\mathrm{O} 5$	$143.17(10)$
N1-Cd1-O1	$71.80(13)$	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 3$	$71.32(13)$
N2-Cd1-O7	$71.70(17)$	$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 3$	$143.06(10)$
O1-Cd1-O7	$96.27(12)$	$\mathrm{O} 7-\mathrm{Cd} 1-\mathrm{O} 3$	$95.54(12)$
N2-Cd1-O5	$71.53(16)$	$\mathrm{O} 5-\mathrm{Cd} 1-\mathrm{O} 3$	$95.28(12)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 5$	$95.88(11)$		
O5-Cd1-O1-C6	$106.8(3)$	$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 5-\mathrm{C} 13$	$-96.2(3)$
$\mathrm{O} 7-\mathrm{Cd} 1-\mathrm{O} 3-\mathrm{C} 7$	$97.7(3)$	$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 7-\mathrm{C} 14$	$106.3(3)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N6-H6A . ${ }^{\text {O }} 6{ }^{\text {i }}$	0.85	1.94	2.773 (5)	170
N6-H6B \cdots O3	0.79	2.09	2.801 (5)	149
$\mathrm{N} 8-\mathrm{H} 84 \cdots \mathrm{O} 8^{\text {ii }}$	0.85	1.92	2.759 (5)	170
N8-H8B $\cdots \mathrm{O} 1^{\text {iii }}$	0.90	2.09	2.850 (5)	142
$\mathrm{N} 11-\mathrm{H} 11 \cdots \mathrm{O} 5^{\text {iv }}$	0.90	2.24	2.954 (6)	136
$\mathrm{N} 12-\mathrm{H} 12 A \cdots \mathrm{~N} 4^{\text {v }}$	0.95	2.28	3.154 (6)	152
N13-H13A \cdots O 4	0.82	1.96	2.776 (5)	174
$\mathrm{N} 13-\mathrm{H} 13 \mathrm{~B} \cdots \mathrm{O} 7^{\text {iii }}$	0.82	2.10	2.812 (5)	144
$\mathrm{N} 14-\mathrm{H} 14 A \cdots \mathrm{O} 5^{\text {iv }}$	0.78	2.14	2.842 (5)	150
$\mathrm{N} 14-\mathrm{H} 14 B \cdots \mathrm{O} 2^{\text {vi }}$	0.85	1.92	2.755 (5)	166

Symmetry codes: (i) $x+\frac{1}{2}, y+\frac{1}{2}, z$; (ii) $x-1, y, z$; (iii) $x-\frac{1}{2}, y+\frac{1}{2}, z$; (iv) $x, y+1, z$; (v) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2} ;$ (vi) $x-\frac{1}{2}, y+\frac{3}{2}, z$.

The highest peak in the final difference electron-density map was located $1.23 \AA$ from atom O 1 . The H atoms of the NH and NH_{2} groups were located in difference syntheses and refined as riding atoms, with distance constraints of $\mathrm{N}-\mathrm{H}=0.87$ and $0.90 \AA$ (for NH)

Figure 4
The shortest distances between the π-systems of the cation N9-N11/C18C 20 and the anions N1/C1-C5 and N1K/C1K-C5K. Atoms labelled with the suffix K are generated by the symmetry operator $(x-1, y, z)$. The intercentroid distances between these π-systems are 4.018 and $3.526 \AA$, respectively. The dihedral angles between the π-systems of the cation and that of the anion are both 10.0°.
and $\mathrm{N}-\mathrm{H}=0.78-0.95 \AA$ (for NH_{2}), and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. The remaining H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=$ $0.95 \AA$, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: P3/PC (Siemens, 1989); cell refinement: P3/PC; data reduction: $P 3 / P C$; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 1998); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXTL-Plus.

We are grateful to Islamic Azad University, Qom Branch, for support of this work.

References

Aghabozorg, H., Ramezanipour, F., Kheirollahi, P. D., Saei, A. A., Shokrollahi, A., Shamsipur, M., Manteghi, F., Soleimannejad, J. \& Sharif, M. A. (2006). Z. Anorg. Allg. Chem. 632, 147-154.

Aghabozorg, H., Akbari Saei, A. \& Ramezanipour, F. (2005). Acta Cryst. E61, o3242-o3244.
Aghajani, Z., Sharif, M. A., Aghabozorg, H. \& Naderpour, A. (2006). Acta Cryst. E62, m830-m832.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Moghimi, A., Sharif, M. A. \& Aghabozorg, H. (2004). Acta Cryst. E60, o1790o1792.
Moghimi, A., Sharif, M. A., Shokrollahi, A., Shamsipur, M. \& Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 902-908.

Sharif, M. A., Aghabozorg, H., Shokrollahi, A., Kickelbick, G., Moghimi, A. \& Shamsipur, M. (2006). Pol. J. Chem. 80, 847-863.
Sheldrick, G. M. (1998). SHELXTL. Version. 5.10. Bruker AXS, Madison, Wisconsin, USA.
Siemens (1989). P3/PC and XDISK (Release 4.1). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

